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Abstract 

The U-6 wt.% Nb (U6Nb) alloy in water-quenched (WQ) state has been in service for a 

number of years. Its long-term reliability is affected by the changes of the alloy microstructure 

and mechanical properties during service. In this communication, the water quenched U-6 wt.% 

Nb (WQ-U6Nb) alloy in service for 15 years at ambient temperatures was studied using an 

analytical TEM analysis. We found that the long-term natural aging resulted in a disorder-order 

phase transformation, leading to the formation of anti-phase boundaries (APBs). The newly-

found ordered phase was then identified by proposing two phase transform schemes, which were 

also discussed with regards to the potential subsequence of the microstructural evolution for the 

alloy in further service. The initial study also provides convincing evidence for the disorder-

order transformation, which has been predicted by numerous studies to be a transient 

thermodynamic event before spinodal decomposition.  This suggests that the long-term naturally 

aged WQ-U6Nb is a good model alloy to study thermodynamic and kinetic phenomena requiring 

chronic processes. 
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 Uranium alloys have a variety of engineering applications that require a combination of 

high strength, good ductility and corrosion resistance [1-6]. The martensitic phase transformation 

and shape memory effects exhibited by U-Nb alloys have also gained increasing interests [7-9]. 

To obtain desired physical and mechanical properties, the alloys are generally subject to various 

heat treatments, including annealing, solution treatment, water quenching, and artificial aging at 

elevated temperatures [10-13]. Water quenching is one of the most important heat treatments. A 

water quenched U-6 wt.% Nb (WQ-U6Nb) from γ (bcc)-field solid solution has a microstructure 

containing martensitic phases that are supersaturated with Nb [6,12].  In the stresses-induced 

martensitic transformation, a variant of the low temperature α (orthorhombic) phase is usually 

formed. This phase is designated α′ martensite since its lattice parameters differ from the 

equilibrium α phase. Two additional variant phases, a monoclinic distortion of α′, named α′′ 

martensite, or a tetragonal distortion of γ, named γo martensite, may also be formed within the 

water-quenched alloy. All these variant phases are Nb supersaturated. The uniformly distributed 

Nb in solid solution suppresses the diffusional decomposition reaction, resulting in improved 

mechanical properties (ductility and toughness) and excellent corrosion resistance [12-14].  

 These supersaturated, unstable phases are prone to decompose.  Numerous studies have 

been carried out to investigate aging behavior of the alloy at different temperatures [12-14]. 

These studies provide important insights to understand the effects of aging at elevated 

temperatures on the mechanical properties. However, what is still missing is the aging behavior 

of the alloy at ambient temperatures. Since it is difficult to study natural aging (NA) of the alloy 

due largely to the sluggish kinetics involved, the aging mechanisms of WQ-U6Nb at ambient 

temperatures are not yet understood. WQ-U6Nb alloy has been in service for many years [10]. 

Recently, Anne and Hiromoto have measured the mechanical properties of WQ-U6Nb alloy in 
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service for 15 years. They found the yield strengths of the 15 years old alloy are greater than 196 

MPa. Compared to the historical data (149 MPa) for the fresh water-quenched alloy, this is a 

25% increment [15]. This study shows a significant strength increase for a WQ-U6Nb alloy in 

service for 15 years [15]. However, it is not known what causes this change, and what will be the 

subsequence of the change. These are in all the most important issues to be addressed regarding 

the reliability of the alloy in long-term service. 

 In present study, we investigate the phase instability in a WQ-U6Nb alloy that has been 

in service for 15 years. It is found that an ordering transformation has occurred, and a modeling 

framework indicates that the disorder-order transformation is the precursor of spinodal 

decomposition.  The WQ-U6Nb alloy used for this investigation was wrought processed from 

Rocky Flats VAR ingot at the BWXT/Bechtel Y-12 plant.  Detailed information regarding the 

fabrication process can be found in [6]. The naturally aged (NA) samples were obtained from a 

15-year old alloy sample. Microstructures of the WQ and NA samples were examined using a 

JEOL 200CX transmission electron microscope (TEM).  TEM foils were machined from the rod-

shape samples and the finial thinning of the foils was prepared by twinjet electropolishing in a 

solution of 45 vol. % methanol, 45 vol. % butyl alcohol and 10 vol. % nitric acid at 50 V and –

20°C. 

 Significant microstructural evolution over a long-term duration is observed. WQ-U6Nb 

alloy has a typical martensitic structure (Figure 1), in which a large volume fraction of twin 

domains is formed during rapid cooling process. This microstructure is consistent with other 

studies [10-13], as previously introduced.  After 15 years in service, the martensitic structure 

remains. However, new microstructral features are observed as shown in Figure 2, in which the 

swirl-shape antiphase domain boundaries (APBs) can be readily seen using bright-field (Figure 
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2a) and dark-field (Figure 2b) TEM imaging technique. The contrast of antiphase domain 

boundary (also known as π boundary) is visible when the phase angle α = 2πg•P = π and is 

invisible when α = 2π (where g is the reflection vector for imaging, and P is the displacement 

vector of APB) [16]. This can be used to verify antiphase domain boundaries. A typical g•P 

image-contrast analysis for APBs in a 15-year NA sample is shown in Figure 3. The bright field 

image in Figure 3a clearly displays the swirl-shape APBs. These APBs are visible in the dark 

field images that were obtained using 00 1  (Figure 3b) and 0 2 1  (Figure 3c) superlattice 

reflections. However, the APBs become invisible in Figure 3d which was obtained using a 0 2 0 

fundamental reflection. These images in Figure 3 further confirmed that the swirl-shaped 

structures are APBs. 

 The APBs are generally formed as a result of a disorder-order transformation [17]. In 

essence, the ordered phase domain has the same crystal structure as that of the disordered phase 

domain, except that it takes up a superlattice arrangement because of the periodic occupation of 

lattice sites by specific atom species. Since no long-range diffusion is involved in this process, 

disorder-order transformation typically occurs at low temperatures, at which high thermal energy 

is not available [17]. In the following sections, two possible disorder-order transformation 

schemes are proposed to model the formation of new chemically ordered α′′ phase in the 

naturally aged U6Nb alloy. Its structure is also identified by a comparison between observed and 

simulated diffraction patterns. 

 In the WQ-U6Nb alloy, the uranium to niobium atomic ratio is 86:14. After solution 

treatment and water quenching from high temperature γ phase, the 14% Nb atoms randomly 

distribute in the uranium matrix, forming a supersaturated, disordered solid solution.  A niobium 

atom could occupy any lattice sites in the unit structure, as shown in Figure 4. To reduce free 
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energy of the system, Nb atoms tend to occupy specific positions in the unit structure to form 

order structure (Figure 4).  For the ordering transformation of Scheme I, U atoms occupy the 

following three specific lattice sites of the ordered superlattice (4 lattice sites/unit cell):  

(0,5/6,1/2), (1/2,1/3,1/2), and (1/2,1/2,0), whereas the (0,0,0) lattice site is randomly occupied by 

U and Nb atoms, in which the probability of the site occupied by U and Nb are 44% and 56%, 

respectively.  The systematic variations in the atomic positions result in different ordered-

domains separated by APBs across which the atoms have the wrong immediate neighbors, which 

is illustrated in Figure 4a.   

 For the ordering transformation of Scheme II, U atoms occupy (0,5/6,1/2) and 

(1/2,1/3,1/2) lattice sites, whereas the (0,0,0) and (1/2,1/2,0) lattice sites are randomly occupied 

by U and Nb atoms, in which the probability of the sites occupied by U and Nb are 72% and 

28%, respectively. This is shown in Figure 4b. Scheme II results in an ordered structure with 

alternative U-rich and Nb-rich layers. The wavelength of this structure is about 4.95 nm, which 

is close to the lattice parameter of α′′ unit cell in the z-direction. 

 The [110]-, [310]-, [312]-, and [100]-zone selected-area diffraction (SAD) patterns 

generated from the 15-year NA sample are shown in Figures 5 and 6, in which the corresponding 

zone diffraction patterns simulated according to the Schemes I and II ordering transformations 

are also displayed.  It is noted that the simulation patterns of the [110]- and [310]-zone are 

identical between Scheme I and II as shown in Figure 5, whereas the simulation patterns of the 

[001]-zone are different between Scheme I and II as shown in Figure 6.  The ordering 

transformation of α′′ phase is identified to be most likely of Scheme II type in accordance to the 

observed and simulated [100]-zone patterns as shown in Figure 6. The ordered structure resulting 

from schemed II has minimum elastic energy, but the greatest chemical gradient. This structure 
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may not be energy favored. The small wavelength (0.495 nm) is one order smaller than that of 

modulated structure resulting from spinodal decomposition at elevated temperatures [13,18]. The 

question is therefore what is the subsequence of this disorder-order transformation. If the 

ordering is the precursor of phase decomposition, how long will it take to accomplish the 

decomposition?  

 Fine-scale phase decomposition, namely spinodal decomposition, of the WQ-U6Nb has 

been experimentally studied at elevated temperatures [11,12,18] using microhardness testing. 

However, this method is not practical for natural aging, since a much longer duration is required 

to carry out such type of study. Hence, future kinetics studies may be employed to predict the 

microstructure evolution and the resulting mechanical property changes over longer time service 

in future. Nevertheless, this communication shows that the disorder-order transformation 

occurred within the WQ-U6Nb alloy at ambient temperatures over the past 15 years of service. 

This finding is critical and important in evaluating the mechanical performance and the 

reliability of this alloy in further service.  

 Before closing, it is worth noting that the naturally aged WQ-U6Nb alloy is important 

alloy system to study long-term phenomena in spinodal decomposition. A number of numerical 

studies have suggested that ordered transient phases should be formed before spinodal 

decomposition in several alloy systems, such as Au-Ni alloy [19, 20]. By heating a TEM foil 

made from the spinodally decomposed Au-Ni alloys, Zhao and Notis [21] observed reversely 

ordered transient phase at the edge of the TEM specimens [21]. It was, therefore, believed that 

the disorder-order transformation may be hindered by the elastic strain in a bulk alloy. However, 

such transient ordering has been never been directly confirmed by experimental observations, 

due largely to the difficulties associated with the kinetic process. The ordering process could be 
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too rapid to observe for some alloys [22, 23]. It could be so slow, taking years to observe the 

microstructure changes [18]. Our study, carried out on this WQ-U6Nb alloy after a service of 15 

years, enables us to observe the disorder-order transform that is otherwise difficult to observe in 

other materials. In this sense, a 15-year naturally aged WQ-U6Nb alloy is a good model alloy to 

study phenomena associated with spinodal decomposition and other phase changes that require 

very long time to accomplish.  
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Figure 1: Martensitic microstructure in the WQ U6Nb alloy. 

 

 

 

 

 

 

 

 

 

Figure 2: Bright-field (a) and dark-field (b) TEM images reveal the formation of swirl-shape 

antiphase domain boundaries (APBs) within the 15-year NA sample.  Notice that APBs appear 

as a dark contract in (a) and a bright contrast in (b). 
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Figure 3:  BF and DF images of growth APBs in an ordered α′′ domain observed in the same 

area. The APBs are visible using 001 and 0 2 1 superlattice reflections but become invisible 

when using 0 2 0 fundamental reflection to image.   
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Figure 4: Schematic illustrations showing two possible schemes proposed for the disorder-order 

transformation occurred in the binary U-14at%Nb (U-6wt%Nb) alloy, in which two different 

partially ordered α′′ unit cells can be generated according to (a) Scheme I. and (b) Scheme II 

ordering transformation. 
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Figure 5:  The [110]-, [310]-, and [312]-zone diffraction patterns generated from the 15-year NA 

sample, in which the superlattice spots are arrowed (upper). The corresponding zone diffraction 

patterns simulated for the proposed ordered α′′ unit cell according to Schemes I and II ordering 

transformation are shown below. 
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Figure 6:  The [100]-zone diffraction pattern generated from 15-yr NA sample shown with 

simulated patterns based upon scheme I and scheme II unit cells.  Here, scheme II is more likely 

to be the one for the partially ordered α′′ phase according to the comparison between observed 

and simulated patterns. 

 

 

 

 

 

 

 

 

 




